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A method is presented for finding the osculating circle, and thus the curvature and the nor- 
mal, of a curve defined by an array of partial volumes. This method is applied, within the 
framework of an enthalpy formulation, to the solutions of model equations that describe the 
motion of a front separating ice and supercooled water. For short to moderate times the 
numerical results agree well with available theory; at longer times a morphological oscillation 
is observed. Such an oscillation was seen in earlier calculations but is not predicted by 
linearized stability theory. Some speculations regarding its origin are offered. 0 1985 Academic 

Press, Inc. 

INTRODUCTION 

There are a number of problems in which it is necessary to evaluate the curvature 
or to find the normal of a computed surface, for example, in combustion theory 
(see, e.g., Markstein [lo] and Sethian [16, 183) in the theory of water waves 
(Stoker [21]), and more generally in flows with a free surface (Nichols et al. [12]), 
and in problems involving solidification and the growth of dendrites (see, e.g., 
Langer [7]). Numerical methods for evaluating curvature are presented, e.g., in 
Nichols et al. [ 121 and Smith [20], where some of the difficulties are noted. In the 
present paper we present an iterative algorithm for finding the osculating circle, and 
thus the curvature and also the normal, of a curve defined by an array of partial 
volumes. The method generalizes easily to the evaluation of the mean curvature of a 
surface in three dimensions. Partial volumes have emerged as a natural and effective 
way for describing moving boundaries, see, e.g., Noh and Woodward [ 131, Chorin 
[2], Ghoniem et al. [S], Hirt and Nichols [6] and Sethian [16, 171. If the partial 
volumes are given accurately, the algorithm is accurate and reliable, albeit not 
necessarily inexpensive. 

We apply our algorithm to the solution of a set of equations that has arisen in 
the analysis of solidification in a supercooled environment (the kind of situation 
where morphological instability and dendrite formation can occur). The boundary 
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conditions at the solid’s boundary, derived from the Gibbs-Thomson relation, 
involve the boundary’s curvature (see, e.g., Turnbull [22], Sekerka [15], Langer 
[7], and Smith [20]). The method of solution relies on a weak “enthalpy” for- 
mulation, previously studied for simpler problems by Rogers et al. [ 141, Shamsun- 
dar and Sparrow [19], Brezis and Crandall [l], and Majda [IS]. The enthalpy for- 
mulation has already been adapted to the present problem, along different lines, by 
Smith [20]. 

Smith observed a discrepancy between his numerical results and the predictions 
of a linearized stability theory after perturbations grow to finite but small size; we 
had expected that a more accurate curvature evaluation and other improvement in 
the method would remove that discrepancy. This has not proved to be the case, 
and, as far as can be judged from [20], our results are comparable with Smith%. 
Some speculation is offered about the reason for the discrepancy; one possibility is 
that linearized theory does not faithfully describe the instability in the presence of 
finite amplitude perturbations. Doubts are also cast on the well-posedness of the 
initial value problem for the model equations, and on their usefulness as a descrip- 
tion of the physics of solidification. 

OSCULATING CIRCLES AND THE CURVATURE OF A CURVE 
DEFINED BY PARTIAL VOLUMES 

Consider a plane region D covered by a square grid of mesh width h. In D lies a 
curve r dividing D into several disjoint pieces. Assume for the sake of simplicity 
that there are only two pieces; the discussion extends trivially to the more general 
case. Imagine that one of the regions is black and the other white, and agree that 
the curvature is positive at a point of r if the center of the osculating circle at that 
point is on the black side of the curve. 

In each mesh cell, of center (ih, j/z), i, j integers, we are given a number fi,j, 
0 < Aj 6 1; fj,j is the black fraction of the area of the cell. Theh,j are known as “par- 
tial volumes.” It is assumed in this section that the fifi, corresponding to r are 
known accurately. If they have been determined by integration it is assumed that 
appropriate precautions have been taken to ensure that the integrations are 
accurate (see below). All the available information about r is contained in the 
array of partial volumes. 

Consider a cell centered at (ih, jh) crossed by r, i.e., 0 <fi,j< 1, as well as the 
eight adjacent cells. We shall be looking for a circle whose intersection with each of 
these nine squares has the same partial volumes as the ones that are given. This cir- 
cle will be taken to be the osculating circle, its radius wil be the radius of curvature, 
the inverse of its radius will be the curvature, and the radius vector leading to its 
center will be the normal to r. 

Assume that, as in Fig. 1, the block of nine cells has been placed on the second 
quadrant of an auxiliary plane and write for short fI,J=fi+,-2,j+J-2, Z, J= 1, 2, 3. 
First evaluate the corner sums S, =fr,i +fiT2 +f2,r + f2,2, etc., and rotate the nine 
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FIG. 1. The auxiliary plane for computing curvature. 

cells if necessary so that the blackest corner is near the origin. If the radius of cur- 
vature r is positive, the center of curvature (i.e., the center of the osculating circle) is 
now in the fourth quadrant. Represent the center of curvature in polar coordinates 
as (p cos 8, -psinl3), 0<0<7c/2. 

Assume first that r is positive, and look for p, Y, and 8 by trial and error, i.e., 
assume values for these quantities, compute the corresponding partial volumes, and 
use these to improve the guess. The volume fractions are easier to evaluate if the 
arcs of the circle are nearer to the horizontal than to the vertical (Fig. 2), i.e., if 
192x/4. One can readily see that ~/4<8<7r/2 if (fi,i +fi,2+fz,,)>(f2,3+ 
f3,2 + f3 3). If this condition is not satisfied, the block of cells is reflected around the 
line joining fr,, and f3,i. The partial volumes are computed by the trapezoidal rule, 
with m points of integration per square. 

(a) Bad (b) Good 

FIG. 2. Precautions in the computation of volume fractions. 
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Let p”, P, r” be the tentative parameters describing the osculating circle; let f& be 
the corresponding partial volumes. 

Define 

C=f*,*, C" =fZ.*, 

A = cfi,J, A"=C&, 
LJ I,J 

tl = arctanfz;3 + f3.2 f f3,3 

fi,l +fu +f*J 

c1” = arctanf n2,3 + fb + fY.3 

fT.1 +fl,z+f& 

where the fi,i are the given partial volumes. 
There are clearly many sets of values fi,j for which there exists no osculating cir- 

cle; we assume first that the problem of finding p, 8, r does have a solution. If 
C” < C and A” < A, the trial circle is too far and p should be decreased; if C” > C 
but k” <A, the radius of the trial circle is too small, etc. After much trial and error 
we came up with an iteration scheme which converged in all the problems we tried; 
the iteration recognizes four cases: 

Case I. c” < C, A” < A (p should decrease). Define the following auxiliary 
quantities: 

q1 = min(C, 1 - C), 

q2 = mint4 ql), 

q3 = max(q,, ~1, 

q4 = h/q, 3 

P1=q4 Ic”-Cl, 

where E is a small quantity (we usually took E between lo-* to 10P3); if fil as, 
then set 

otherwise set 

b = max(B1, b2h 

where 

/I2 = h(sin 0) IA” - A(/5, 

and finally compute 

P “+l=@‘-b. 
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b is the appropriate decrease in p. The geometrical factors ql, q2, q3, q4 serve to 
modify b in cases where only a small piece of the middle square is either black or 
white and convergence could be very slow. pz is introduced to modify the change in 
p so as to avoid situations in which a circle that is too small is slowly moved 
towards the origin without an increase in its radius. A moment’s thought will 
explain the geometrical factors sin ~9 and 5. 

Case II. c” > C, A” > A (p should increase). b is defined as in Case I, and 

P n+l=pn+b. 

Case III. C” < C and A” > A (both p and r should increase). Define 

b = min((p”)’ IA” - A(/2h, p”/2), 

and set 

P “+‘=p”+b+h(A”-A), 

r n+‘=rn+b. 

If A” <A, one wishes p”+’ - p” to be as large as possible, but not so large that the 
correct p will be overshot and oscillation will set in. The factor (~“)~/2h and the 
restriction b 6 p”/2 have been found to be satisfactory by trial and error. 

Case IV. C” > C and A” < A (both p and r should decrease). b is defined as in 
Case III, and set 

P “+‘=p”-b+h(A”-A), 

r n+I=,.“-bb. 

In all cases, we further compute 

and impose the restrictions 

If r becomes large, for example, r > 100 or r > l/s, one concludes that the 
assumption r > 0 is fallacious and one looks for an osculating circle centered on the 
other side of the curve. The same iteration can be used if the nine squares are reflec- 
ted around the line connecting (1, 1) with (3, 3) and the f,,J are transformed into 
their complements f >,J = 1 - f,,J. If r becomes large a second time, one concludes 
that the boundary is flat. The iteration is stopped when 
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If the nine numbers f,,J can be produced by the intersection of a circle with the 
nine cells, the iteration will exhibit that circle. It is possible to alter the “off 
diagonal” fiJ in such a way that the sums in the definition of the quantities 8, A, C 
are unchanged and a circle will still be produced, even though the f,,J individually 
can no longer be produced by that circle. One can experiment with various least 
squares and other fits in that case, but none seem to be practically superior or bet- 
ter justified than simply accepting the circle produced by the algorithm. Finally, 
there are many situations in which no circle can produce the given values of 8, A, 
and C; the algorithm will then fail to converge. We decide that no convergence has 
taken place if the number of iteration exceeds some preset integer N (we usually 
used N= 35, a value that is somewhat larger than necessary). 

In many practical problems, the values of 8, r, and p at the end of the iteration at 
one point will serve as good starting values for the iteration at the next point. 

A NUMERICAL EXAMPLE 

There are many problems in which one can display a spectacular agreement 
between a known curvature and the curvature computed by the algorithm of the 
preceding section, In particular, the curvature of circles is reproduced with an 
accuracy that depends only on the number m of points in the quadrature formula 
and on the tolerance E. With m = 15 and E = lo- 3 we get three good digits if the 
curvature is 0( 1). It may be more instructive to consider a less well-behaved 
problem. 

Consider the curve y = l/2 + (3/10) sin 27tx for 0 <x< 1. Its curvature is 
C(x) = +( 127c*/lO) sin(2rcx)/( 1 + (9/25) rc* COS~(~~CX))~‘~. Place the curve on a 
20 x 20 grid (h = l/20), evaluate the corresponding volume fractions, and then 
evaluate the curvature by our iteration. The partial volumes are defined in the 
squares ih < x < (i + 1) h, j/r < y < (j + 1) h. There is more than one curvature per 
given value of i since two cells located above each other can be intersected by the 
curve. In Table I we exhibit the computed curvature and compare it with “exact” 
answers. The “exact answers” II is C(x), the exact curvature, evaluated at the points 
(i- l/2) h, i.e., in the middle of the cells. The “exact answer” I is C(x*) evaluated at 
x* defined by 

X*=(i-l)h+fi,jh if fi-i,j=OY 

=(i-l)h+(l-fi,j)h if fi- Ij= 1. 

The point x* is the location of the black/white interface according to a standard 
recipe for reconstructing a surface from partial volumes (see [13]). The numerical 
parameters are m = 15 and E = 10 -3, and an average of about 10 iterations per cell 
is needed for convergence. Note that the curvature changes by a large amount from 

581/57/3-11 
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TABLE I 

Computed vs. Exact Curvature for y = 4 + & sin 271x, h = & 

i j Computed curvature Exact value I Exact value II 

2 12 0.55 0.45 0.77 
2 13 0.98 0.92 0.77 
2 14 1.35 1.26 0.77 
3 14 2.09 1.26 2.04 
3 15 3.06 3.23 2.04 
4 15 5.34 3.34 5.49 
4 16 7.30 8.57 5.49 
5 16 9.86 8.58 11.38 
6 15 7.16 5.81 8.58 
6 16 8.93 11.38 8.58 
7 14 2.42 2.12 3.34 
7 15 4.00 5.49 3.34 
8 13 1.02 0.93 1.26 
8 14 1.75 2.04 1.26 
9 11 0.27 0.24 0.45 
9 12 0.52 0.49 0.45 
9 13 0.84 0.77 0.45 

10 9 -0.19 -0.18 1.84x lo-’ 
10 10 8.50x lo-) 1.84x lo-’ 1.84x lo-’ 
10 11 0.19 0.20 1.84x lo-’ 
11 7 -0.84 -0.76 -0.45 
11 8 -0.52 -0.49 -0.45 
11 9 -0.27 -0.20 -0.45 
12 6 - 1.75 - 1.72 - 1.26 etc. 

point to point. The smoothness of the computed curvature function can be seen 
when one considers the arrangement of the points in the plane. 

The agreement between the computed curvature and the exact curvature 
evaluated at x* is better than the agreement between the two “exact” values of the 
curvature. Other choices of location for the interface also lead to different values for 
the “exact” curvature. The partial volumes do not determine the location of the 
interface accurately enough for the purpose of deciding where the analytical for- 
mula for the curvature should be evaluated, and the computed curvature is a better 
estimate of the curvature of the portion of the curve contained in a given cell than 
the analytical formula evaluated at an ill-determined point. Since points on the 
curve are hard to locate, second differences involving their locations are even more 
problematic, and attempts to evaluate the curvature in this case by the algorithms 
suggested in [12] or [20] lead to very large errors. 

Note that the curvature is antisymmetric around x = 4; we display a few values 
for x larger than 4 in order to show that the algorithm makes the right decisions 
about the sign of the curvature without outside prompting. 
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AN ENTHALPY FORMULATION OF THE STEFAN PROBLEM 

Before considering the problem of unstable solidification, in which curvature 
plays an important role and to which we shall apply the algorithm of the preceding 
section, we discuss the easier, curvature-independent, Stefan problem. A collection 
of recent papers on the subject can be found in [23]. We restrict our attention to 
the enthalpy formulation because it will allow us in the next section to formulate an 
appropriate curvature/phase iteration. We begin with the case of a single space 
dimension. 

The x axis is divided into disjoint sets Z, W; Z is filled with a solid called “ice” and 
W is filled with “water.” A temperature field is given at t = 0. At points interior to 
either Z or W the evolution of the temperature is described by the heat equation; for 
the sake of simplicity we assume the thermal diffusivities of both “ice” and “water” 
are equal to 1 (the case of phases with non-equal diffusivities can be readily handled 
by the method of alternate phase truncation [ 141). In Z, T= T,< 0; in 
W, T= T, > 0. The latent heat of change of phase is H> 0. At the boundary 
between Z and W we require that 

T=O, (14 

aTlv -- +aT’-Z-ZV 
ax ax - ' (lb) 

where V is the velocity of the ice/water interface, counted as positive if water is 
freezing. For the sake of simplicity, it is assumed that the heat capacity of both 
water and ice is 1. Equation (lb) expresses the conservation of energy at the inter- 
face. 

Define the enthalpy u by 

u=T 

=T+H 

T can be expressed in terms of u by 

T(u) = u 

=u-H 

=o 

for TGO, 

for T>O. 

for ~60, 

for u>H, 

for O<u<H. 

The solution of the problem is the weak solution of the equation 

u, = T(u),,, (2) 

where t is the time and the subscripts denote differentiations. Equation (2) can be 
solved numerically. Existence, convergence, and uniqueness theorems can be found 
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in [ 1, 8, 141; it follows from [ 141 that if Eq. (2) is discretized in time and space, 
then under broad conditions the leading term in the error is O(k log(t/k))‘/2, where 
k is the time step. 

Pick the simplest approximation to Eq. (2): write u; 5 u(ih, nk), T = T(u;), and 
let 

This scheme converges for k/h2 < l/2. The following heuristic argument explains 
why the scheme converges. 

In both Z and W, Eq. (2) reduces to a standard heat equation, for which the 
scheme (3) is a reasonable approximation. Assume that for i < i, we have ice, for 
i > i0 we have water, and at i0 we have 0 < u; < H, i.e., the phase is undefined and 
we have “mush.” At i,, Eq. (3) reduces to 

u?+‘-uU” =k T”,+1 -0 r,-0 
rg aI h h 

h. 

(F, + i - 0)/h is an approximation to 8, T,, if we assume that the interface is at 
x,, = ioh. Similarly, (0 - T,)/h is an approximation to 8, T,. The value of u is chang- 
ing at a rate approximately proportional to (dXT,- ~3, T,)/h. Suppose the area 
occupied by water is expanding. During the time i,h is a mush point ui, changes 
from 0 to H; thus the front moves a distance h during the time it takes ui, to grow 
from 0 to H at the rate (a, Tw - a, T,)/h and Eq. (lb) is satisfied on the average. Of 
course, the freezing point is not located exactly at ioh during all this time and thus 
the balance equation (4) is correct only in an average sense. Most importantly, one 
also concludes that u,,,/H is the approximate partial volume of water in the cell 
(i,-;)h<x<(i,+$)h. 

One can use the last remark to construct a better approximation to the solution 
of the Stefan problem. It is easy to see (see Table II below) that error is generated 
mainly at the interface. One can try to locate the interface accurately with the help 
of the computed partial volumes, and then apply condition (lb) accurately in the 
neighborhood of that interface. A construction in that spirit was given by Smith 
[20] in the two-dimensional case. Our experience has been that such constructions 
increase the accuracy at the beginning of the calculation, but that the increased 
accuracy does not survive for long; we omit the details of the construction. 

In Table II we exhibit the results of a calculation with a one-dimensional test 
problem. The region of integration is 0 <x < 1; H is equal to 1. The initial con- 
ditions are 

u(x, 0) = exp(0.5 -x) - 1 for x>O.5, 

= 2 exp(0.5 -x) - 1 for xKO.5. 
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TABLE II 

Errors in One-Dimensional Model Stefan Problem 

Straightforward 
enthalpy formulation Modified formulation 

(1) after one step (f=6.17 10e3) 

-3.95 10-S 
-3.56 1O-5 
-3.17 10-5 
-1.02 10-S 

- 
-5.11 10-4 
-1.02 10-5 
-9.11 10-h 

(2) after 10 steps (r=6.17 lo-*) 

-8.29 lo-’ 
-2.06 10m2 
-4.12 1O-2 
-7.55 10-z 

-3.75 1o-2 
-1.98 lo-* 
-8.43 10-X 

(3) after 40 steps (t = 0.247) 

-3.95 10-3 
-7.32 1O-3 
-7.73 10-3 
-9.25 1O-3 
-1.18 1O-2 
-2.42 1O-2 

-9.86 lo-’ 

-3.95 1om5 
-3.56 1O-5 
-3.17 10-S 
-8.69 10m5 

-4.10 10-X 
-1.02 10-5 
-9.11 10-e 

3.60 10m4 
8.89 10m4 
1.51 IO-3 
2.08 lo-’ 

1.56 1O-3 
1.08 10m3 
5.74 1o-4 

-1.52 10m3 
-3.59 10-x 
-8.57 1O-3 
-1.00 10-2 
-1.67 10m2 
-1.51 10-2 

- 
-3.90 10-s 

The boundary conditions are 

~(0, f) = exp(t + 0.5) - 1, 

~(1, t)=2exp(t-0.5)- 1, 

The solution of the problem is 

24(x, t) = exp( t - x + 0.5) - 1 for t-x>0.5, 

=2exp(r-x+0.5)- 1 for t-x-cO.5. 
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The water/ice interface starts at x = 0.5 and moves with velocity one in the direction 
of increasing x. The numerical parameters are h = 4, k/h* = 0.5. 

In Table II we display the errors in the solution of this problem, i.e., the differen- 
ces between the computed and the exact solution, for x = ih, i = l,..., 8. At the point 
where 0 < u < H, i.e., boundary point between ice and water, there is no reasonable 
definition of the error. As one can see from the table, the error radiates from the 
discontinuity; the more “accurate” method has a decided advantage over the 
straightforward solution for the first 10-20 steps, but by step 40 the two are com- 
parable. We have no analysis of this phenomenon, except for the observation that 
similar phenomena have been observed in the case of hyperbolic equations with dis- 
continuous solutions (see [4,9, 111). Higher accuracy can be recovered in linear 
hyperbolic problems if appropriate processing is applied to the data and/or the 
solution; if such processing exists for the Stefan problem, we have not been able to 
find it. The variation of the error as a function of k and h agrees with the results in 
[14] and will not be displayed. 

The enthalpy method generalizes to multi-dimensional problems. In two space 
dimensions Eq. (2) becomes 

q=AT(u), A = Laplace operator. (5) 

The boundary conditions at the water/ice interface become 

T=O, 

aT, ar, 
-an+an=Hvn, 

(64 

(6b) 

where d/an denotes differentiation in the direction normal to the interface, and V,, is 

\ 

0 water 

PFRONT 
ice 

0 

(b) 

FIG. 3. Origin of grid effects with a five-point Laplacian. 
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the normal velocity of the interface. On the border of Zu W a boundary condition 
on u or T is also needed. 

The difference approximation (3) can be readily generalized to the case of two 
dimensions; analysis and examples can be found in [ 1, 141. The error 
O(k log(t/k))“2 will restrict us to small time steps, and we see no reason to aban- 
don explicit schemes. 

It is important to point out that the boundary condition (6b) will be satisfied 
only on the average in space as well as on the average in time. This is due to grid 
effects, which can be best understood by example. Consider a front separating ice 
and water, and suppose AT is computed by the usual five-point formula (Fig. 3). It 
is easy to see that in both cases (a) and (b) of Fig. 3, in which the directions of the 
fronts are quite different from each other, the effective normal to the interface in the 
evaluation of the boundary condition (6b) is the same. This grid effect can be 
reduced by constructing approximations to the Laplacian which have as much 
rotation invariance as possible. A construction suggested by the Huygens principle 
of [2] is 

+a1 +P) 
B(T,+,,j+l+T,-,,j-l+Ti+l,j-1+Ti~~,j+~-4T,j). (7) 

Numerical experiment suggests that the value p = l/$ is best. Equation (5) can 
now be approximated by 

24 ’ + ’ = U” + k& T(u). 

This scheme is stable if 

k<i B+l 
h2’4m+ 

In the problem discussed in the present section, the difference between the solution 
obtained with the usual five-point approximation and the one obtained with a,, is 
not significant. 

UNSTABLE SOLIDIFICATION 

A relatively simple model problem involving unstable solidification and possible 
dendrite formation is discussed in Langer [7], Sekerka [15], and Smith [20]. It 
involves two phases, “ice” and “supercooled water,” i.e., water that has been 
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allowed to cool below zero without freezing. At the interface between ice and water, 
the following conditions are imposed: 

T= --KC, @aI 

aT, aT, 
-dn+dn=HV,,. (8b) 

Equation (8b) is identical to Eq. (6b), with T, denoting the temperature of super- 
cooled water. Equation (8a) is a form of the Gibbs-Thomson relation (see, e.g., 
[21]); rc is -a constant and C denotes the curvature of the interface, taken as a 
positive if the circle of curvature lies on the ice side of the interface. 

The enthalpy formulation of the preceding section can be adapted to this 
problem. Equation (5) survives: U, = d T(u). However, the relation between T and u 
must be re-examined. It is clear from physical considerations and from the 
requirement that our problem have a unique solution that supercooled water can 
be allowed to freeze only where it is adjacent to ice, and conversely ice can be 
allowed to melt only when it touches water (see Smith [ZO] ). Suppose at t = 0 we 
have a region Z occupied by ice, a region W occupied by water, and a region M of 
mathematical mush between Z and W; M is made up of cells which are crossed by 
the water/ice interface. In Z, T= u; in W, T= u - H even if T< 0; in M, T(u) must 
be chosen so that condition (8a) is satisfied; condition (8b) will be satisfied if con- 
servation of energy is enforced. T is assumed given at the boundary of Tu W. The 
first problem is to determine which cells belong to M. 

Each cell has eight neighbors, all of which participate in the difference operator 
(7). M is a subset of those cells which do not contain ice but have a neighbor con- 
taining ice. However, not all the cells which are neighbors of Z necessarily belong to 
M. It is easy to see that just as in the case of ordinary, non-supercooled water, the 
calculation can occasionally produce a cell of water and a cell of ice lying next to 
each other. A reasonable test for deciding whether a mesh cell (i, j) abutting on ice 
contains water or mush is the following: Consider those neighbors of (i, j) that are 
known to contain water as well as their neighbors, and determine by linear inter- 
polation a reasonable water temperature Ti,j in (i, j). If ui,, - H < Fii,,, (i, j) is filled 
with mush, and if u~,~- H > T,;,,, (i, j) is filled with water. Having determined M, the 
mush region, one can determine the curvature C of the interface and then set 
T= --KC in M. 

The determination of C involves an iteration (similar in principle, but not in 
detail, to the iteration described in [20]). Indeed, the curvature C depends on the 
array of volume fractions of ice in the cells of M, but these volume fractions depend 
on the temperature of change of phase and therefore on C. The natural iteration 
proceeds as follows: One starts with a guess for the array of C’s (an appropriate 
guess is always available from the previous step or from the initial conditions). Sup- 
pose u in a cell believed to be in M satisfies u 2 --KC+ H, then the cell really 
belongs to W and is removed from M. Suppose u < --ICC, then the cell belongs to I. 
If neither of these conditions holds, then the ice volume fraction in the cell is 
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1 - (u + rcC)/H. One now finds new Cs by the curvature algorithm described above. 
For convergence, one must underrelax, i.e., the new curvature at a point at the end 
of an iteration is set equal to the average of the newly computed curvature and of 
the curvature available at end of the previous iteration. The relative ease with which 
this iteration can be set up within the framework of the enthalpy formulation is that 
formulation’s main attraction. However, the iteration converges slowly; as many as 
30 iterations may be needed with a reasonable criterion for convergence and the 
expense is considerable. The reason for the slow convergence is likely to be the ill- 
conditioned nature of the phase/curvature relation. A small change in the shape of 
the ice region can produce a large change in curvature and thus a substantial 
change in the temperature of phase transition. It is rather surprising that the 
iteration converges at all except when all the perturbations are small. One should 
note that the finite cell size imposes a bound on the possible perturbations in cur- 
vature, and one may well wonder if the problem does remain well posed when the 
cell size shrinks to zero. In fact, one may wonder whether linear perturbation 
theory applies to the solidification problem in a supersaturated medium unless one 
can somehow restrict oneself to smooth perturbations6,(for further comments, see 
below j. 

Having found the curvature C, one has T(U) everywhere and one can use a dif- 
ference scheme to advance the enthalpy. The scheme (7) is both experimentally and 
theoretically preferable to a scheme with a smaller stencil and will be used 
throughout the calculations of the present section. Having determined U, new 
domains Z, W, and M can be determined, new values of C can be found, etc. 

Some precautions must be observed: 

(i) As stated above, water can freeze and ice can melt only after a passage 
through a state of mush. 

(ii) T is typically at a maximum in A4, since both ice and supercooled water 
can be colder than zero. If, in the application of the difference scheme, we allow W 
and Z to be neighbors, the maximum will be smeared and the region of mush will 
spread uncontrollably. On the other hand, the mush region M as determined above 
may fail to separate Z and W, and thus additional, artificial, and temporary mush 
cells must occasionally be created. To avoid a systematic bias, we create them alter- 
nately on the water side and on the ice side of the water/ice interface. An 
appropriate curvature at these extra mush points is found by averaging the cur- 
vature at the neighboring points of the mush region M. 

(iii) The variation of the values of u at the cells of M clocks the passage of 
the interface through these cells. The first time a cell joins M the “clock” may fail to 
be at zero since the values of u and C depend on the history of the cell and of its 
neighbors and on the gradients of T in the region of supercooled water. An 
adjustment must be made to the value of u at a newly identified cell in M, and that 
cell must then be exempted from tests that may reassign it immediately back to I 
or W. 
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(iv) The curvature algorithm may fail to converge. If that happens, it is 
preferable to use an old value of C or an average of neighboring values of C rather 
than rely on a possibly meaningless number. 

We try our method on the first test problem of Smith [20]. At t = 0 a cylinder of 
ice of radius R0 = 0.15 is surrounded by supercooled water. At r = jm = 0.5 
we impose the boundary condition T = - 1, and set H= 2. In the quasi-stationary 
approximation (in which it is assumed that the front moves slowly compared to the 
speed with which the heat distribution relaxes to equilibrium (see [7, 15])), there is 
a solution satisfying these conditions: 

T(r) = -K/R + CI log(r/R), r 2 R, 

= -u/R, r<R, 

where a= (1 - lc/R)/log(2R), and R is the radius of the growing cylinder of ice. The 
growth velocity is 

&dR_ (1-dR) 
dt HR log( 1/2R)’ 

We impose initial conditions on T compatible with this solution. The stability of 
this solution is discussed in [7, 151. We pick K = 0.01; the interface should then be 
stable. In Table III we exhibit the computed R = m, where A = the area of ice, 
the computed growth velocity R = (R(t + k) - R(t))/k, where k is the time step, the 
average computed R, averaged from t = 0 to the current time, and the value of d 
given by the quasi-stationary approximation, with h = l/35 and k at the limit of 
numerical stability, k = 2.88 x 10 - 4. For the times exhibited, the agreement is 
excellent, and it remains excellent for a long time; when R = 20, the average com- 
puted R is 2.55 while the quasi-stationary d given by formula (9) is 2.59. The two- 
step oscillation in R observed from time to time is due to the alternation in the 
location of the temporary mush cells described under precaution (ii) above, and has 
no particular significance. It is natural to compare the analytical solution with an 
average solution, for the reasons described in the preceding section. 

The agreement is, however, not perfect in other respects. The shape of the ice 
region remains as perfectly circular as can be decided on the basis of the available 
partial volumes until RN 0.18, but then it begins to oscillate slightly. The curvature 
C is never perfectly constant. In Table IV we exhibit some values of C at R-0.18, 
drawn from a calculation with h = l/20. There is a bulge at the four corners 
corresponding to the lines y = fx. This bulge will eventually be damped, and, after 
R-0.18, the shape of the frozen area will oscillate, and the distance between the 
center of the ice and a point on the interface will eventually vary by as much as 
10%. This phenomenon is roughly independent of h in our experiments, 
l/20 < h < l/60. These observations are apparently in agreement with the obser- 
vations of Smith, and are surprising because according to linear stability theory we 
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TABLE III 

Solution of Solidification Problem 

R Computed d Averaged computed d Quasi-stationary k 

0.14999 0.000 0.000 2.584 
0.15075 2.611 2.611 2.582 
0.15150 2.614 2.612 2.581 
0.15228 2.700 2.642 2.580 
0.15308 2.770 2.674 2.579 
0.15389 2.801 2.699 2.578 
0.15470 2.824 2.720 2.576 
0.15552 2.841 2.737 2.575 
0.15634 2.841 2.750 2.574 
0.15716 2.817 2.758 2.574 
0.15796 2.794 2.761 2.573 
0.15876 2.750 2.760 2.572 
0.15950 2.557 2.743 2.571 
0.16005 1.933 2.681 2.571 
0.16101 3.319 2.727 2.570 
0.16131 1.030 2.613 2.570 
0.16223 3.184 2.649 2.569 
0.16244 .733 2.536 2.569 
0.16335 3.161 2.571 2.568 
0.16476 2.865 2.557 2.567 
0.16550 2.582 2.558 2.567 
0.16643 3.229 2.589 2.566 
0.16717 2.548 2.587 2.566 
0.16798 2.814 2.596 2.566 
0.16879 2.792 2.604 2.566 
0.16982 3.573 2.641 2.565 
0.17052 2.438 2.634 2.565 
0.17122 2.425 2.626 2.565 
0.17199 2.649 2.627 2.565 
0.17260 2.127 2.611 2.565 
0.17331 2.445 2.605 2.565 
0.17392 2.120 2.590 2.565 
0.17442 1.735 2.564 2.565 
0.17525 2.869 2.573 2.566 
0.17590 2.528 2.564 2.566 
0.17670 2.760 2.570 2.566 
0.17736 2.279 2.562 2.566 
0.17820 2.937 2.572 2.567 
0.17892 2.478 2.569 2.567 
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TABLE IV 

Computed Curvatures in the 
Growing Circular Icicle Problem 

Computed curvature 
i i (exact value: 5.89) 

8 8 1.51 
8 9 7.58 
8 10 4.71 
8 11 4.53 
8 12 4.71 
8 13 7.58 
8 14 7.51 
9 8 7.58 
9 14 7.58 

10 8 4.71 
10 14 4.71 
11 8 4.53 
11 14 4.53 
12 8 4.71 
12 14 4.71 
13 8 7.58 
13 14 7.58 
14 8 7.57 
14 9 7.58 
14 10 4.71 
14 11 4.53 
14 12 4.71 
14 13 7.58 
14 14 7.57 

are in a stable regime. The validity of the quasi-stationary approximation can be 
checked on the computer and is not in question with our parameter values. 

The oscillation can be partially ascribed to numerical error. The curvature is 
dependent on second derivatives of the functions that describe the interface, and 
cannot be accurate if that interface is not computed accurately. Here one should 
emphasize the significance of the “grid effects” mentioned earlier. Suppose one 
solves a differential equation and obtains a numerical solution that is accurate to 
some order. If the error has an asymptotic error expansion, then the computed 
solution can be differenced and yields approximations to the derivatives of the 
solution of the same order of accuracy as the approximation of the solution itself. 
In the presence of “grid effects” the functions that describe the interface do not have 
an asymptotic error expansion, and the curvature algorithm, accurate though it 
may be, is at least partly stymied by the inadequacy of the data on which it 
operates. 

This is not, however, a fully satisfactory explanation. One would expect that 
small, numerically induced perturbations on a stable surface would be damped 
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quickly, and this does not happen; the bumps in the surface, though they do not 
grow catastrophically, oscillate and do not decay as the linear theory predicts. A 
possible explanation is that, as in other front stability problems, the linearized 
theory does not predict correctly the response of the system to a perturbation of 
finite amplitude. For example, Landau instability of flames does not occur because 
flame fronts develop cusps (see Sethian [ 16, 183). Fronts in porous media respond 
to perturbations as per the predictions of the linear theory only when the pertur- 
bations are extremely small (see [3]). The ill-conditioned nature of the phase/ 
curvature relation, discussed above, casts a further doubt on the validity of a 
linearized stability theory in which it is assumed the perturbations are smooth. 
Thus, the numerical errors in the shape of the surface may be interacting with a 
underlying physical finite amplitude instability to create a morphological 
oscillation. If such a finite amplitude instability does indeed exist, and is related to 
the ill-conditioned nature of the phase/curvature relation, then it is questionable 
whether Eqs. (2) and (8) provide a reasonable mathematical model of the physical 
situation they are meant to describe. 

Note. The programs used above can be obtained from the author. 
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